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Under the Connected Vehicle environment where vehicles and road-side infrastructure can
communicate wirelessly, the Advanced Driver Assistance Systems (ADAS) can be adopted
as an actuator for achieving traffic safety and mobility optimization at highway facilities.
In this regard, the traffic management centers need to identify the optimal ADAS algorithm
parameter set that leads to the optimization of the traffic safety and mobility performance,
and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles.
Once the ADAS-equipped drivers implement the optimal parameter set, they become
active agents that work cooperatively to prevent traffic conflicts, and suppress the devel-
opment of traffic oscillations into heavy traffic jams. Measuring systematic effectiveness
of this traffic management requires am analytic capability to capture the quantified impact
of the ADAS on individual drivers’ behaviors and the aggregated traffic safety and mobility
improvement due to such an impact. To this end, this research proposes a synthetic
methodology that incorporates the ADAS-affected driving behavior modeling and state-
of-the-art microscopic traffic flow modeling into a virtually simulated environment.
Building on such an environment, the optimal ADAS algorithm parameter set is identified
through a multi-objective optimization approach that uses the Genetic Algorithm. The
developed methodology is tested at a freeway facility under low, medium and high
ADAS market penetration rate scenarios. The case study reveals that fine-tuning the
ADAS algorithm parameter can significantly improve the throughput and reduce the traffic
delay and conflicts at the study site in the medium and high penetration scenarios. In these
scenarios, the ADAS algorithm parameter optimization is necessary. Otherwise the ADAS
will intensify the behavior heterogeneity among drivers, resulting in little traffic safety
improvement and negative mobility impact. In the high penetration rate scenario, the iden-
tified optimal ADAS algorithm parameter set can be used to support different control
objectives (e.g., safety improvement has priority vs. mobility improvement has priority).
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1. Introduction

The Advanced Driver Assistance Systems (ADAS) have been widely accepted in the last decade as an effective technology
for assisting drivers to avoid traffic accidents (NHTSA, 2015; Bengler et al., 2014). One of the core components of the ADAS is
the alarm algorithms (Ararat et al., 2006; ISO 15623, 2002; Kiefer et al., 2003; Brunson et al., 2002). The algorithms define
multiple criteria that specify the maximum speed a driver is allowed to drive at a road segment, the minimum following
headway or spacing the driver should maintain, the safe gap for lane changes, and the timing at which the driver should take
evasive actions to avoid a collision (Adell et al., 2011; Nodine et al., 2011; Farah et al., 2012; Birrell et al., 2014; Várhelyi et al.,
2015). If any of the criteria is violated, the ADAS will warn the driver via video, audio or haptic messages (Farah and
Koutsopoulos, 2014), or even directly intervene the driving task in critical situations (Coelingh et al., 2010). Because of
the features, the ADAS is able to effectively reshape the drivers’ behaviors such that they will interact more properly and
quickly with the traffic environment (Birrell et al., 2014), and their maneuvers more harmonious in a traffic stream
(Farah et al., 2012). Subsequently, many traffic conflicts (near miss traffic accidents) can be avoided and the associated traffic
disturbances dampened. As a result, the operation of a traffic stream would be greatly improved with enhanced safety.

With the advancement of the Connected Vehicle (CV) technology that enables wireless communication among vehicles
and road-side infrastructure (Jones, 2013; Shladover et al., 2012; Kesting et al., 2010), the ADAS’s capability of improving
traffic safety and mobility can be further amplified through the collaborative efforts of the traffic management centers
and the ADAS users. To this end, the traffic management centers first perform scenario-based analyses for a concerned high-
way facility based on the real-time or projected traffic conditions (e.g., traffic demand and fleet composition), the ADAS mar-
keting penetration rate (i.e., the percentage of vehicles that are equipped with the ADAS), and the drivers’ acceptance or
compliance level to the ADAS assistance. In these analyses, the ADAS with various algorithm parameter levels are assumed
to be deployed consistently in the vehicle fleet. The output of the analyses is a specific set of the ADAS algorithm parameters
that enables the maximum safety and mobility improvement of the concerned facility. Such an ADAS algorithm parameter
set is referred to as the optimal ADAS algorithm parameter set. The optimal ADAS algorithm parameter set is then broad-
casted via the wireless communication to individual ADAS-equipped vehicles. Once the ADAS-equipped drivers implement
the optimal parameter set, they become active agents that work cooperatively to prevent traffic conflicts, and suppress the
development of traffic oscillations into heavy traffic jams.

To identify the optimal ADAS parameter set, we need to quantify the impact of the ADAS on individual drivers’ behaviors,
and estimate the systematic safety and mobility improvement due to the behavior impact. The existing ADAS effectiveness
studies, however, mainly adopt field or simulator-based evaluation methods that can test the behavior adaptation for a small
group of test drivers (Bueno et al., 2014; Várhelyi et al., 2015). It is not technically or economically feasible to identify the
systematic impact of the ADAS within the existing evaluation framework. To address this challenge, a cost-effective no-risky
synthetic approach is developed in this study to capture the effectiveness of the ADAS on individual drivers’ driving behav-
iors, and the subsequent aggregated influence of such affected behaviors impacts on traffic mobility and safety from a sys-
tematic standpoint of the CV-involved traffic flows. This integrated methodology is built into a microscopic simulation
environment to investigate how the ADAS equipped within individual vehicles can be implemented cooperatively to opti-
mize the traffic flow operation. Specifically, we first establish the functional relationship between the ADAS algorithm
parameters and the drivers’ behavior adaptation based on findings of the existing ADAS effectiveness studies. The identified
ADAS-affected behavior parameters are then embedded into the state of the art microscopic traffic flow models as factors
representing drivers’ response sensitivity to traffic stimuli, such as relative speed and spacing between the subject driver
and the leading vehicle. The traffic flow models are used to realistically reproduce the vehicle activity data, which provides
the basis for computing the safety and mobility measures of effectiveness (MOEs). Finally, a multi-objective optimization
framework that employs the Genetic Algorithm (Miettinen, 2012) is adopted to iteratively execute the simulation model
until it identifies the optimal ADAS algorithm parameter set that maximize the MOEs.

The paper is organized as follows. In Section 2, a comprehensive literature review is conducted to summarize the major
functionality of the ADAS, the ADAS-affected driving behaviors, and the systematic impact of the ADAS on traffic safety,
mobility and emission reduction. Section 3 discusses the methodology framework of the presented research. In Section 3.1,
the alarm algorithm of a major ADAS function (i.e., forward collision warning) is elaborated and the key parameters of the
algorithm are identified. Section 3.2 contains the modeling methods of the ADAS-affected behaviors, and the incorporation of
the ADAS-affected behaviors into the microscopic traffic flow models. Section 3.3 describes the multi-objective optimization
method used for searching for the optimal ADAS algorithm parameter set. In Section 4, the presented methodology is tested
in a case study performed at a realistic freeway site. Finally, the conclusion of the research is presented in Section 5.
2. Literature review

A typical ADAS can provide user assistance functions including forward collision warning (FCW), speed limit warning
(SLW), curve speed warning (CSW), lane departure warning (LDW), and/or blind spot warning (BSW). Among them, the
FCW, SLW and CSW are designed to assist the longitudinal movement of subject drivers, whereas the LDW and BSW for
the lateral movement. In the remaining sections of the paper, the FCW, SLW and CSW are referred to as the longitudinal
movement assistance functions and the LDW and BSW are referred to as the lateral movement assistance functions. The
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impact of these functions on driving behaviors is summarized in Tables 1 and 2. Table 1 includes field tests of the ADAS;
whereas Table 2 contains the simulator based studies. The Cooperative Adaptive Cruise Control (CACC) is also a widely stud-
ied ADAS function. Nonetheless, the CACC automatically performs longitudinal vehicle control, rather than affects drivers’
behaviors.
Table 1
Field tests of ADAS regarding its impact on driving behaviors.

Study Study Description System Impact on Behaviors

Ben-Yaacov et al. (2002) Field tests of FCW effect tiveness. Alarmed sounded if
headway less than 1 s

Headway (HW, in sec)
% of time HW in 0–0.4 s, Base/FCW: 9%/0%;
% of time in 0.4–0.8 s, Base/FCW: 34%/2%;
% of time in 0.8–1.2 s, Base/FCW: 17%/20%;
% of time in 1.2–1.6 s, Base/FCW: 5%/22%;
% of time in 1.6-2 s, Base/FCW: 3%/7%

Shinar and Schechtman (2002) Field tests of FCW effectiveness. Initial warning if
HW < 2.5 s; red light warning if HW < 1.2 s; and red light
plus audio warning if HW < 0.8 s

HW (s)
% of time HW < 0.8 s, Base/FCW: 20.1%/14.6%;
% of time HW in 0.8–1.2 s, Base/FCW: 22.8%/20.9%;
% of time HW > 1.2 s, Base/FCW: 57.1%/64.5%

Adell et al. (2011) Field tests of an ADAS named the SASPENCE system,
developed in the EU-financed project PReVENT. Alarm
sounded when following too close, there is a risk of rear-
end collision, high speed when entering curve road, and
speed over the speed limit

PRT (Perception-Reaction Time, in sec) in case of
curve alarms
Freeway, Base/ADAS: 4.7/2.6
Urban, Base/ADAS: 3.8/1.8
Rural, Base/ADAS: 3.1/2.7
PRT in case of obstacle alarmsFreeway, Base/
ADAS: 4.1/3.2
Urban, Base/ADAS: 3.0/2.6
Rural, Base/ADAS: 3.7/3.2
User Trust (0–100)
Safe Distance Function: 83
Safe Speed Function: 77
Speed Limit Warning: 88

Nodine et al. (2011) Field tests of an ADAS named the Integrated Vehicle-
Based Safety System (IVBSS). The system provides FCW,
CSW, BSW, and LDW. A TTC-based algorithm is adopted
to determine the FCW warnings

PRT (s)
Base/IVBSS: 1.03/0.58
Speed (m/s)
Base/IVBSS: 24.7/24.9
HW (s)
Freeway Base/IVBSS: 1.41/1.37
Freeway Base/IVBSS: 2.05/1.98
Number of Lane Changes per 100 Miles Driven
Freeway Base/IVBSS: 49.1/48.8
Freeway Base/IVBSS: 38.2/36.5
Perceived Usefulness (0–100)
Male/Female: 51/55

Farah et al. (2012) Field tests of an ADAS named the CO-OPerative SystEms
for Intelligent Road Safety (COOPERS). COOPERS
provides speed limit advice, SLW, accident/road
work/congestion warning, weather warning, and LDW

Speed (km/h)
Base/ COOPERS: 101.60/100.01 (speed limit
100 km/h)
HW (s)
Base/COOPERS: 1.52/1.55
User Acceptance (0–7)
System useful: 6
Improve prompt maneuver: 5.6
Improve safety: 5.5

Birrell et al. (2014) Field tests of a smartphone-based ADAS that was
developed by the U.K. project Foot-LITE. Yellow warning
sounded if HW < 2 s and red warning if HW < 1.5 s. It
also contains LDW, gear change advice, acceleration and
braking advice

HW (s)
Base/ADAS: 2.05/2.33
Base/ADAS in HW < 1.5 s: 6.61%/2.32%

Farah and Koutsopoulos (2014) Field tests of an ADAS named the CO-OPerative SystEms
for Intelligent Road Safety (COOPERS). COOPERS
provides speed limit advice, SLW, accident/road
work/congestion warning, weather warning, and LDW

Measured data used to compute parameters in the
GHR model. Parameters are driver age dependent

Várhelyi et al. (2015) Field tests of an ADAS named the Continuous Support
(CS), which is developed in the EU-financed interactIVe
project. It provides FCW, SLW, CSW and BSW

Improvement in speed in curves, speed adaptation
and side collision reduction
Deterioration in speed when turning, dangerous
distance to the side



Table 2
Simulator tests of ADAS regarding its impact on driving behaviors.

Study Study description System impact on behaviors

Lee et al. (2002) Simulator-based tests of FCW effectiveness. Kinematic
algorithm adopted in the FCW for determining behavior
thresholds. Assumed follower deceleration 0.40 g for early
warning (EW) and 0.75 g for late warning (LW). Initial speed
56.3/88.5 km/h. Lead vehicle deceleration 0.40/0.55 g. Initial
headway 1.70/2.50 s

PRT (s)
Distracted drivers, Base/EW/LW:
2.21/1.35/2.10
Non-districted drivers, Base/EW: 1.30/0.70

McGehee et al. (2002) Simulator-based tests of FCW effectiveness. Kinematic
algorithm adopted in the FCW. Assumed follower
deceleration 0.75 g. Assumed subject driver PRT 1.0 s for late
warning (LW) and 1.5 s for early warning (EW). Lead vehicle
stops

PRT (s)
EW, Base/FCW: 2.53/1.93
LW, Base/FCW: 2.53/2.23

Mulder et al. (2004) Simulator-based tests of FCW effectiveness. Subject drivers
are asked to maintain an HW of 1.5 s and perform secondary
tasks. The FCW provides gas pedal haptic feedback computed
based on HW and TTC. Two feedback types: force feedback
(FF) that relies on HW and TTC and stiffness feedback (SF)
that relies on HW only

Standard deviation of HW (s)
Base/FF/SF: 0.228/0.203/0.205
Median HW (s)
Base/FF/SF: 1.52/1.58/1.66
Mean PRT (s), central visual stimuli
Base/FF/SF: 0.511/0.525/0.488
Mean PRT (s), peripheral visual stimuli
Base/FF/SF: 0.503/0.524/0.492

Abe and Richardson
(2006)

Simulator-based tests of FCW effectiveness. Stop-Distance-
Algorithm adopted in the FCW. Assumed follower
deceleration 0.45 g for early warning (EW) and 0.60 g for late
warning (LW). Initial speed 40/60/70 mph. Initial headway
1.70/2.20 s (SHW/LHW). Lead vehicle deceleration 0.8 g

PRT (s)
EW, SHW, mean Base/FCW: 0.82/0.60
EW, SHW, std Base/FCW: 0.5/0.15
EW, LHW, mean Base/FCW: 0.81/0.81
EW, LHW, std Base/FCW: 0.5/0.3
LW, SHW, mean Base/FCW: 0.65/0.65
LW, LHW, std Base/FCW: 0.2/0.4
User Trust (Grade 0–10)
SHW, EW/LW: 6.7/5.2
LHW, EW/LW: 6.8/3.9

Jamson et al. (2008) Simulator-based tests of FCW effectiveness. Adaptive and
non-adaptive FCW tested. Adaptive FCW (AFCW) captures
the subject driver’s PRT. Warning based on Stop-Distance-
Algorithm. Initial HW = 1 s and speed = 50 mph. Lead vehicle
brakes in 4 m/s2 until reaching 5 mph, continuing the speed
for 10 s and then accelerating back to 50 mph

PRT (s)
Expected events, Base/FCW/AFCW: 1.1/1.2/1.1
Unexpected events, Base/FCW/AFCW: 6.1/5.2/4.9
User Trust (0–100)
FCW/AFCW: 62/63

Mohebbi et al. (2009) Simulator-based tests of FCW effectiveness. Warning based
on a threshold TTC of 5 s. Tactile warning (TW) or audio
warning (AW) provided. Initial HW = 2 s and speed between
55 and 65 mph. Leader brakes in 6 m/s2 until stop. Subject
drivers engage in hands-free cell phone conversations

PRT (s)
None conversation, Base/TW/AW: 0.76/0.67/0.69
Simple conversation, Base/TW/AW: 0.93/0.73/0.85
Complex conversation, Base/TW/AW: 0.96/0.83/0.90

Koustanaï et al. (2012) Simulator-based tests of FCW effectiveness. Stop-Distance-
Algorithm adopted in the FCW. Initial speed = 90 km/h. Lead
vehicle brakes in 3.0 m/s2 (braking scenario, BS) or 5.0 m/s2

(emergency braking scenario, ES). The test drivers may be
familiar with the FCW (familiar group, FG) or not familiar
with the system (unfamiliar group, UG). Drivers asked to
perform secondary tasks

PRT (s)
ES, Base/UG/FG: 3.4/1.5/1.4
BS, Base/UG/FG: 3.0/1.8/1.7
HW (s)
ES, Base/UG/FG: 3.2/3.6/5.8
BS, Base/UG/FG: 4.6/5.0/5.4
User Trust (0–10)
UG: 5.3
FG: 6.3

Aust et al. (2013) Simulator-based tests of FCW effectiveness. Alarm issued
based on a spacing algorithm. Initial speed 90–100 km/h,
initial HW = 1.5 s (SHW) or 2.5 s (LHW). Lead vehicle brakes
in 0.55 g. Each test driver encountered 6 braking events (E1-
E6)

PRT (s)
SHW, Base/FCW: E1, 2.25/2.14; E3, 1.91/1.10; E5, 1.87/1.18
LHW, Base/FCW: E1, 3.10/2.87; E3, 2.76/1.37; E5, 2.46/1.19

Bueno et al. (2014) Simulator-based tests of FCW effectiveness. Stop-Distance-
Algorithm adopted in the FCW. Initial HW = 2 s and initial
speed = 90 km/h. Lead vehicle brakes for 2.5 s to reach 0.8 s
HW. Subject drivers perform distraction secondary tasks (DT)

PRT Reduction (s)
Light DT Group: 0.15 s before DT; 0.07 s during DT; and
0.12 s after DT
Heavy DT Group: 0.12 s before DT; 0.02 s during DT; and
0.07 s after DT
Mental Demand
Test drivers report less mental demand with the assistance
of the FCW
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Above tables indicate that the simulator-based study is often used in the early stage of the ADAS development; whereas
the field tests are mostly conducted as the technologies become more mature. The simulator-based tests usually focus on
exploring the effectiveness of specific ADAS functionalities or improving the design of the ADAS algorithms. On the other
hand, the field tests mainly concern the reliability of the entire ADAS system. In this case, the tests not only monitor the
behavior impact, but also examine system aspects such as the reliability of the wireless communication and the human
interface design. The majority of driver behaviors tested in the studies have two common features: (1) they are correlated
with the traffic safety performance; and (2) they can be quantitatively measured by using existing sensing technologies.
Besides these tested behavior parameters, some less studied ADAS-affected behaviors might also have significant impact
on the traffic flow operation. Examples include the variation of a ADAS-equipped driver’s behavior adaptation under differ-
ent traffic conditions and driver mental states, the behavior patterns of the driver after using the ADAS for a long period of
time, and the behavior adaptation of non-equipped drivers as they interact with the ADAS-equipped drivers. Since these
parameters are difficult to measure with the existing methods, the development of more sophisticated experimental design
and more advanced measuring technologies is required to address the challenge. In addition, the functionality description of
the ADAS indicates that the ADAS might also affect behaviors related to the traffic flow stability. Such behaviors include the
drivers’ short-term prediction of surrounding vehicles’ speed and location, and the multi-anticipation behavior that takes
into account multiple leading vehicles in the car-following state. Unfortunately, these behaviors are not considered by
the listed studies. Such a research limitation requires attention of the future studies.

Tables 1 and 2 indicate that the FCW is the most tested function of the ADAS. It has potential to affect subject drivers’
perception-reaction time and desired following headways. As the FCW is expected to be widely adopted by users in the near
future, this function and its affected behaviors are selected in this study to demonstrate the methodology for ADAS algorithm
parameter optimization.

The effectiveness of the ADAS is usually evaluated by the simulation studies. A summary of the studies is provided in
Table 3. It reveals that a great research effort has been made to estimate the safety, mobility and environmental impact
of systems that automatically perform driving tasks for drivers (e.g., CACC). A relatively fewer studies concern the driver
assistance functionalities of the ADAS, due to the lack of the analysis capability for capturing the ADAS-equipped drivers’
behavior adaptation. The studies that do explore the effectiveness of the driver assistance functionalities (e.g., Lundgren
and Tapani, 2006; Khondaker and Kattan, 2015) fail to model the behavior adaptation as a function as the ADAS control algo-
rithms. The test results from studies listed in Tables 1 and 2 are not fully exploited to quantify the range of the behavior
adaptation or explore the functional relationship between ADAS-equipped drivers’ behavior adaptation and the ADAS algo-
rithm parameters. Without the consideration, their methodologies are not able to consider the duration and intensity of
Table 3
Systematic impact of ADAS on traffic flow operation.

Study System analyzed Behavior
considered

Traffic flow models System impact

Lundgren
and
Tapani
(2006)

ADAS (no function
specified)

PRT (0–1.5 s)
and desired
headway (1–3 s)

Gazis-Herman-Rothery
(GHR) model for car-
following (CF) behavior

130% increase of time-exposed time-to-collision (TET) and
280% increase of time-integrated TTC (TIT) as PRT increases
from 0 to 1.5 s; 233% decrease of TET and 300% decrease of
TIT as desired headway increases from 1 to 3 s

Van Arem
et al.
(2006)

CACC NA The MIXIC model for CF and
lane-changing (LC) behavior

Reduction in number of shockwaves and increase in average
speed as CACC penetration rates increases. Reduction in
traffic safety because CACC vehicle platoons prevent other
vehicles from merging. No significant impact on throughput

Hegeman
et al.
(2009)

Overtaking assistant
system (OAS)

Driver’s
overtaking
frequency

The rural traffic simulator
(RuTSim)

The impact of OAS penetration rate was not significant. The
11 s minimum overtaking time threshold was found to
minimize the safety measures such as minimum time-to-
collision (TTC), TET and TIT

Schakel
et al.
(2010)

CACC and
acceleration advice
controller (ACC)

Driver’s
acceleration
affected by ACC

Intelligent Driver Model
(IDM) for CF behavior

Traffic stability is analyzed for a single lane road with 2000
veh/h traffic load. The non-CV case has growing shockwave
duration and range. The AAC and CACC cases have
decreased shockwave duration and increase shockwave
range and speed

Kesting
et al.
(2010)

Adaptive cruise
control (ACC).

NA IDM and constant-
acceleration heuristic

0.3% increase of maximum flow rate due to 1% increase of
ACC penetration rate

Wang et al.
(2014)

Ecological adaptive
cruise control
(EcoACC)

NA The EcoACC control inputs
determined based on model
predictive control

With EcoACC, 17% reduction in flow and vehicle mile
traveled (VMT) and 19.5% reduction in average CO2
emission under low density traffic (20 veh/km); 31.3%
increase in flow and VMT and 9% reduction in average CO2

emission under high density traffic (40 veh/km)
Khondaker

and
Kattan
(2015)

Variable Speed Limit
(VSL) under the CV
environment

Desired speed IDM for CF behavior 20% reduction of total travel time, 6–11% of safety
improvement, and 5–16% reduction in fuel consumption
under 100% CV penetration rate
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ADAS’s impact on individual driver, or the randomness of the level of impact on different drivers. Hence the outputs of these
methodologies might be incapable of accurately reflecting the systematic impact of the ADAS.
3. Methodology

The following table lists the notations used in the presented research (see Table 4).
The methodology framework for identifying the optimal ADAS algorithm parameter set is illustrated by Fig. 1. The frame-

work elaborates major components involved in this research, and governing equations adopted by individual component.
Numbers in the shaded circles represent subsections that discuss the corresponding components. In this study, we focus
on the modeling of the perception-reaction time (PRT) and desired headway (DH) adaptation, because these parameters
can be significantly affected by the FCW (see Sections 3.1 and 3.2). When looking for the optimal ADAS parameter set, we
do not apply an explicit objective function that quantify the relationship between the ADAS parameter and the MOEs.
Instead, the functional relationship is obtained implicitly through executing the presented traffic flow models (see Sec-
tion 3.3). A major assumption in this study is that a driver makes behavior changes only when the ADAS is interacting with
the driver. If the ADAS does not provide warning or advisory information, the driver is assumed to behave similarly to the
non-ADAS equipped drivers. In this case, the ADAS-equipped drivers’ long-term behavior adaptation is not considered.

3.1. Identification of target ADAS algorithm parameters

As one of the most important functions in ADAS, the FCW is considered in the presented study. The FCW function deter-
mines the driving behavior criteria based on the kinematic and perceptual approach (Bella and Russo, 2011). With the per-
ceptual approach, an alarm is triggered once the subject driver’s headway or time-to-collision (TTC) to the leading vehicle is
lower than the pre-specified critical headway or TTC threshold (Shinar and Schechtman, 2002; Mulder et al., 2004; Mohebbi
et al., 2009). On the other hand, the kinematic approach continuously compares the subject driver’s following distance (or
spacing) with the warning distance, which is a function of the host vehicle’s speed, the relative speed and spacing between
Table 4
Notations used in the research.

ADAS Algorithm

HWADAS (s) Threshold headway used by the ADAS algorithm. It represents the smallest safe headway. HW�
ADAS represents the boundary of

the threshold headway
WD (m) Warning distance, a threshold distance used by the ADAS algorithm. It represents the shortest safe spacing between a subject

vehicle and its leading vehicle
H Subject vehicle that hosts the ADAS system
L Leading vehicle in front of the subject vehicle
AHmax (m/s2) Anticipated maximum deceleration of the subject driver
A (m/s2) Current acceleration
V (m/s) Current speed
TLS (s) Time for the leading vehicle to stop: TLS ¼ �VL=AL

TFS (s) Time for the subject vehicle to stop: THS ¼ T � ðVH þ AH � PRTÞ=AHmax if VH þ AH � PRT > 0, or THS ¼ �VH=AH

RR (m/s) Range rate, which equals to VL � VH

D0 (m) Minimum distance between the leading vehicle and the host vehicle
TM (s) Time when RR is 0: TM ¼ f½RRþ ðAL � AHÞPRT�=ðAHmax � ALÞg þ PRT if TM > PRT , otherwise TM ¼ PRT
WD�

ADAS (m) Boundary of the warning distance, a function of the WD

Driver behavior parameters

r Compliance level, a random number with a range of 0–100
DH� (s) Desired headway affected by the ADAS
PRT� (s) Perception-reaction time affected by the ADAS
DH0 (s) Desired headway of a driver not equipped with the ADAS
PRT0 (s) Perception-reaction time of a driver not equipped with the ADAS
Dt1 (s) ADAS influence time
Dt2 (s) Recovering time

Car-following and lane-changing models

_v (m/s2) Acceleration of a modeled vehicle
a (m/s2) Maximum (acceptable) acceleration of a modeled driver
b (m/s2) Maximum (acceptable) deceleration of a modeled driver
v0 (m/s) Desired speed of a modeled driver
v (m/s) Actual speed of a modeled driver
Dv (m/s) Relative speed with the leading driver
s� (m) Desired following spacing
s0 (m) Spacing in jam traffic
s (m) Actual spacing between a subject driver and the leading driver
a, b Model coefficients in the intelligent driver model
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the host vehicle and the leading vehicle. If the spacing is shorter than the warning distance, the ADAS will issue a warning
message to the subject driver (Brunson et al., 2002).

In some studies, the perceptual approaches that adopt the TTC based thresholds are reported (Mulder et al., 2004;
Mohebbi et al., 2009; Nodine et al., 2011), and in other studies the headway based thresholds are applied (Shinar and
Schechtman, 2002; Birrell et al., 2014). The TTC or headway threshold of an ADAS is usually directly set to a fixed value.
The reported TTC thresholds range from 2.0 s to 5.0 s, whereas the headway thresholds are between 1.2 s to 2.4 s. Both
TTC thresholds and headway thresholds can be adopted to affect the subject driver’s desired car-following distance. In this
study, the headway threshold is selected as an ADAS algorithm parameter to be optimized later, because it can be directly
associated with the subject driver’s car-following behavior. The boundary of the headway threshold is given as:
HW�
ADAS 2 ½1:2s;2:4s� ð1Þ
Above boundary specifies the field within which the search for the optimal headway threshold should be performed.
The kinematic approach adopts algorithms such as the Mazda algorithm (Ararat et al., 2006), the stopping distance algo-

rithm (ISO 15623, 2002), the CAMP algorithm (Kiefer et al., 2003), and the National Highway Traffic Safety Administration
(NHTSA) algorithm (Brunson et al., 2002). In this study, the NHTSA algorithm is adopted because it considers different cases
as the host vehicle approaches the leading vehicle in a potential collision course. Specific model formulations are applied for
computing the warning distance in individual cases. Particularly, when an initially moving leading vehicle stops prior to the
host vehicle or the leading vehicle is initially stopped, the following condition should be met:
TLS < TFS ð2Þ

The warning distance is:
WD ¼ 0:5ðAHmax � AHÞPRT2 þ 0:5ALT
2
LS þ ðAH � AHmaxÞPRT � THS � RR � THS � ALTHSTLS þ 0:5AHmaxðTHSÞ2 þ D0 ð3Þ
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When the host vehicle stops while the leading vehicle is still in motion or TLS P THS, the warning distance is:
WD ¼ 0:5ðAHmax � ALÞT2
M þ ðAH � AHmaxÞPRT � TM � RR � TM � 0:5ðAH � AHmaxÞPRT2 þ D0 ð4Þ
The NHTSA algorithm contains three free parameters: the minimum distance between the leading vehicle and the host
vehicle (D0), the perception-reaction time of the subject driver (PRT), and the maximum deceleration of the host vehicle
(AHmax). These parameters are candidate ADAS algorithm parameters to be optimized, because changing their levels can alter
the timing when the ADAS starts to interact with the subject driver. In practice, D0 is usually set to a constant equal to the
average vehicle spacing in jam traffic (e.g., 2 m). The PRT of the subject driver changes from time to time as the driver inter-
acts with ADAS. It is not proper to use it as the ADAS algorithm parameter for optimization. Based on the above discussion,
the AHmax is taken as the second ADAS algorithm parameter to be optimized. The influence of AHmax on the warning distance is
visualized by Fig. 2.

The existing studies adopt AHmax in a range between 0.1 g and 0.9 g (g ¼ 9:8 m=s2, gravity acceleration) (Brunson et al.,
2002; Lee et al., 2002). A smaller AHmax would result in a longer warning distance and earlier collision warning, and a larger
AHmax shorter warning distance and later collision warning. In this case, the boundary of the warning distance threshold s�ADAS
is given as:
WD�
ADAS ¼ WDðA�

HmaxÞ;A�
Hmax 2 ½0:1g;0:9g� ð5Þ
3.2. Modeling driver behavior adaptation under the influence of ADAS

According to the existing studies as enlisted in Table 1, the FCW function of the ADAS primarily impact subject drivers’
behavior regarding the PRT and DH. The headway adaptation arises because the ADAS continuous reminds the subject driver
of her real-time headway via a color-based human machine interface (e.g., red icon means a lower than threshold headway
and green icon means larger). In this case, the subject driver can easily maintain her headway in a safe and consistent level
and the headway records are closely distributed around the headway threshold set by the ADAS.

When modeling drivers’ headway adaptation, the uncertainty of a driver’s compliance level to the ADAS information
needs to be considered. To this end, a compliance index r is assigned to each of the modeled drivers. The index is a random
integer that ranges between 0 and 100. A driver with a compliance index of 0 completely ignores the information sent by the
ADAS, whereas a driver with a compliance index of 100 completely follows the instructions given by the ADAS.

The ADAS does not interact with the equipped drivers all the time. It only becomes active when there are traffic events
that require the drivers’ attention. The ADAS stops the interaction when the events no longer exist. In this case, the impact of
the ADAS on the driving behavior does not exist all the time. In this study, we assume that the influence of the ADAS reaches
its maximum level as the ADAS triggers an alarm. The maximum influence will last for a short time, during which the driver’s
behavior parameters adapt to different levels. This period is referred to as the ADAS influence time. Afterwards, the influence
of the ADAS will slowly decrease and finally disappear. The period of the influence decrease is called recovering time. The
two time periods are visualized in Fig. 3.

After incorporating the uncertainty of the compliance level and the ADAS influence time, the ADAS-affected headway is
mathematically given as:
Parameters used in this plot: initial speed of the leading vehicle = 30 m/s; 
deceleration of the leading vehicle = -0.55g; PRT = 1.4 s; and D0 = 2 m.

Fig. 2. Warning distance under various AHmax levels.



Fig. 3. Visualization of ADAS influence time and recovering time.
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DH� ¼
DH1 ¼ DH0 þ ðHWADAS � DH0Þ � r

100 t < Dt1

DH2 ¼ DH1 þ ðDH0 � DH1Þ � t�Dt1
Dt2

Dt1 6 t < Dt1 þ Dt2

DH0 otherwise

8><
>: ð6Þ
where t is the time elapsed since the ADAS triggers the alarm.
The PRT is defined as the time gap between the onset of a traffic event (such as the braking light of the leading vehicle is

on) and the onset of the subject driver’s response to the event. As stated by Treiber and Kesting (2013), the PRT contains the
mental processing time, the movement or action time, and the technical response time of the vehicle. The mental processing
time is the duration in which the driver assesses the traffic condition and decides proper actions to take. It is further divided
into the sensation time, the perception time, the situation awareness time, and the decision time (see Fig. 4).

The PRT reduction is observed as the ADAS sends collision warnings. Before the warning is issued, the ADAS has com-
pleted the sensation, perception and situation recognition in the background via the wireless communication. The primary
wireless communication technology of the ADAS is the Dedicated Short Range Communication (DSRC), which has a very
small communication latency (e.g., in the order of 0.002 s, see Hill and Krueger, 2016). For this reason, the ADAS can perform
situation recognition much faster than human drivers, and consequently help reduce the total time required by a driver in
response to an event. In addition, upon receiving the message, the subject driver becomes aware of the imminence of a
potential collision and understands where the risk comes from (i.e., from the leading vehicle). The Highway Safety Manual
(AASHTO, 2010) reported that a human driver generally responds much faster to expected events than to unexpected events.
When the ADAS is involved in the driver’s decision-making process, the driver’s PRT is defined as the summation of ADAS’s
communication and situation recognition time, the information processing time, the decision time, the movement time, and
the technical response time, as shown by Fig. 4. The information processing time is the time period required by the driver to
understand the ADAS information.

Table 1 reveals that the PRT reduction of an ADAS-equipped driver could be in a range of 10% to 50%. Similar to the DH
model, the ADAS affected PRT is described as follows:
PRT� ¼
PRT1 ¼ PRT0ð1� 10%� 40% � r

100Þ t < Dt1

PRT2 ¼ PRT1 þ ðPRT0 � PRT1Þ � t�Dt1
Dt2

Dt1 6 t < Dt1 þ Dt2

PRT0 otherwise

8><
>: ð7Þ
These ADAS-affected driving behaviors are incorporated into the Intelligent Driver Model (IDM, see Treiber et al., 2006). In
the IDM, a driver’s acceleration is modeled as a function of her own speed and the following distance. The desired following
distance is a function of the driver’s speed, desired headway, and the relative speed to the leading vehicle. In each update
interval, the IDM computes the ratio between the speed and the driver’s desired speed and the ratio between the following
distance and the desired distance. If the ratios are less than 1, the driver tends to accelerate. The intensity of the acceleration
is determined based on magnitude of the ratios. In this study, the IDM has been modified in the two aspects: (1) a delay term
is added to represent the driver’s perception reaction time; and (2) a desired headway function described by Eq. (6) is used to
replace the constant desired headway adopted in the original IDM model. The modified IDM is mathematically represented
by the following equations:
_vðt þ PRTÞ ¼ a 1� vðt þ PRTÞ
v0

� �a

� s�ðvðt þ PRTÞ;DvðtÞÞ
sðtÞ

� �b
" #

ð8Þ

s�ðv ;DvÞ ¼ s0 þmax 0;v � DH þ vDv
2

ffiffiffiffiffiffi
ab

p
� �

ð9Þ



Fig. 4. Components of PRT.
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In the presented methodology framework, the variation of the behavior parameters among drivers are considered by
assigning normal distributed v0, DH and PRT to individual drivers. After incorporating the PRT term into the IDM, the model
will produce vehicle collisions. Nonetheless, realistic modeling of traffic accidents is beyond the capability of the modified
IDM. Thus, these artificial collisions are removed from the numeric simulation algorithm. The assumption for the model sim-
plification is that the drivers will brake strongly to prevent severe conflicts from developing into collisions. During the hard
brake process, the drivers highly concentrate on the action in and their response is very fast manner. The assumption is
implemented such that a modeled driver’s response delay will be relaxed from Eq. (8) if the driver is about to collide with
the leading vehicle in the next second. Once the response delay is removed, the subject driver will slow down immediately
with a large deceleration. The potential collision can be avoided because of the large deceleration.

The lane-changing model developed by Hidas (2002, 2005) is used to capture the lateral movements of the modeled vehi-
cles. In the Hidas model, a lane change may be considered ‘desirable’ or ‘essential’. A driver feels ‘desirable’ to make a lane
change if she tries to gain speed advantage in the target lane. On the other hand, a driver’s lane-changing desire is ‘essential’
when the driver must perform a lane change in order to continue her or his route. Once a driver is motivated to perform a
lane change, she will choose to perform either a free, cooperative, or forced maneuver. In a desirable lane change, the subject
driver will only attempt to perform the free maneuver, which does not involve the interaction between the subject driver
and the lag vehicle (see Fig. 5). In an essential lane change, the subject driver will first seek for the opportunity to make a
free maneuver. If it is not possible, the driver will check if the lag vehicle is willing to courteously slow down and create
a gap. If the lag vehicle starts to slow down, she will merge into the created gap and completes a cooperative maneuver.
In case the subject driver is unable to conduct a free or cooperative maneuver, she will decide to force into the target lane,
which results in a forced maneuver.

The modeled lane change behavior differs with the real lane change behavior in the following aspects. First, the lane
change maneuver is assumed to take place instantly. In addition, the maximum deceleration accepted by drivers involved
in a lane change is much larger than the maximum deceleration used in the normal car-following condition. Finally, the
model does not consider the relaxation behavior, which describes the gradual increase of the following distance after the
completion of a lane change. After applying the modeling assumptions, the traffic flow models are able to closely reproduce
the traffic flow patterns observed at the study site.

In the methodology framework, the IDM and Hidas models are embedded into the Matlab environment. The models are
executed through a Matlab script that outputs the vehicle location, speed and acceleration in each update interval. The out-
puts are then input into the VISSIM environment with external programming codes via the .COM interface. The trajectories of
the modeled vehicles are visualized through running the rebuilt VISSIM model. The following table shows the pseudocode
that depicts the programming algorithm executed at each simulation time step (see Table 5).
subject vehicle

lag vehicle lead vehicle

total clear gap + vehicle length

lag gap lead gap

target lane

merge-point

current lane

Fig. 5. Illustration of vehicles involved in a lane change.



Table 5
Algorithm for modeling behavior impact of ADAS.

DEFINE t = 0; (t represents time elapsed since the ADAS triggers alarm)
DH� ¼ DH0;
PRT� ¼ PRT0;
FOR each ADAS-equipped vehicle in the network

IF actual headway < HWADAS AND actual spacing >= WD
DH� ¼ DH1;
t = time step;

ELSE IF actual headwayP HWADAS AND actual spacing <WD
PRT� ¼ PRT1;
t = time step;

ELSE IF actual headway < HWADAS AND actual spacing <WD
DH� ¼ DH1;
PRT� ¼ PRT1;
t = time step;

ELSE
IF 0 < t < Dt1

DH� ¼ DH1;
PRT� ¼ PRT1;
t = t + time step;

ELSE IF Dt1 < t < Dt1 þ Dt2
DH� ¼ DH2;
PRT� ¼ PRT2;
t = t + time step;

ELSE
DH� ¼ DH0;
PRT� ¼ PRT0;
t = 0;

END IF
END IF

END FOR
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3.3. Identification of optimal ADAS algorithm parameter set

In this study, the Genetic Algorithm (GA) is adopted to search the optimal HWADAS and AHmax that enable the optimization
safety and mobility MOEs. The GA iteratively executes the car-following and lane-changing models presented in Section 3.2
and computes the MOEs at various HWADAS and AHmax levels. The optimization programing can be expressed by the following
equation:
maxM S:T:
x 2 X

Iex ¼ I�ex

�
ð10Þ
where M is a vector containing the target MOEs; x ¼ HWADAS

AHmax

� �
; X ¼ HW�

ADAS
A�
Hmax

� �
; the constraint I�ex represents exogenous

parameters (in comparison to endogenous parameters such as the driving behaviors) that affect dynamics of a traffic flow
stream at a study highway facility. In the presented methodology, Iex includes the highway facility type (e.g., basic freeway
segment, freeway weaving/merging/diverging segment, arterial or intersection), traffic demand, fleet composition, and pen-
etration rate of the ADAS. The optimal set of the ADAS parameters x̂ are found if for some neighborhood of x̂ there does not
exist a Dx such that xþ Dx 2 X and
Miðx̂þ DxÞ 6 Miðx̂Þ;8i and
Miðx̂þ DxÞ < Miðx̂Þ for at least one i

ð11Þ
where x̂might contain multiple points. While moving from one point to another, there is always a certain amount of sacrifice
in one MOE to achieve a certain amount of gain in the other(s).

In this study, the safety MOE is the average number of conflicts experienced by a driver as she passes the concerned road
segment. The occurrence of a conflict is identified by using the TTC measure. The TTC is defined as the time remaining until a
collision will occur between two vehicles if their collision course and speed difference are maintained (Hayward, 1972). If at
some time the TTC of a subject driver drops below a threshold TTC, it indicates the start of a conflict; and later as the TTC
rises above the threshold again, the conflict is ended. The TTC is mathematically given:
TTC ¼
D

vS�vL
; vL < vS

1; otherwise

(
ð12Þ
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where D is the spacing between the leading vehicle and the subject driver; vL is the speed of the leading vehicle; and vS is the
speed of the subject driver. In this research, the threshold TTC is 1.5 s, as recommended by Gettman et al. (2008).

The mobility MOEs are the highway throughput in number of vehicles per hour per lane (veh/hr/ln) and the average travel
delay reduction per vehicle (s/veh). The delay is computed as the difference between a driver’s actual travel time through a
road segment and the travel time the driver would have if she travels at the free flow speed of the road segment. It is com-
puted by the following equation:
delayi ¼ ti � S=v0 ð13Þ

where ti is the actual travel time of driver i; S is the length of the study site; and v0 is the free flow speed.

4. Case study for a freeway bottleneck

4.1. Study site description

A freeway segment at northbound I-71 freeway close to Exit #12 in the Greater Cincinnati area, Ohio is taken as the study
site in this research (see Fig. 6). The freeway mainline has three lanes. The Montgomery on-ramp is connected to the north-
bound freeway mainline by a 110-m acceleration. The on-ramp is 390 m in length. A five-weekday traffic data count was
performed at this site in June 2015 to obtain the traffic demand data. The mean peak hour traffic volume of the freeway
is found to be 4400 vehicles per hour, with 4.5% of heavy-duty vehicles. The mean peak hour ramp traffic is 950 vehicles
per hour, with 1% of heavy-duty vehicles. This site has recurrent traffic congestions, mainly due to the traffic disturbances
caused by the large ramp flow. In the case study, the traffic data is collected in a 900-m freeway segment that covers the on-
ramp merging area. A 1600-m freeway segment upstream of the area is also included in the simulation study. This segment
allows the modeled vehicles to fully interact before entering the data collection area.

4.2. Calibration and validation of traffic flow models

The calibration and validation of the IDM and Hidas model are carried out following the procedure developed by Park and
Won (2006). The objective of the model calibration is that, given the peak hour traffic inputs, the calibrated models are able
to reproduce key traffic flow parameters that are compatible with the real-world observations. The key traffic flow param-
eters used in the calibration are mean vehicle travel time over the 900-meter data collection segment (travel time) and mean
vehicle speed at the beginning of the acceleration lane (entry speed). The benchmark travel time and entry speed are col-
lected by using GPS-equipped floating cars from 2013 to 2016. The traffic data collected under the congested traffic condi-
tions are used for the calibration and validation. A data point falls into the congested traffic condition if the travel time is
larger than 50 s—our data inspection indicates that the travel time under the free flow and congested traffic condition breaks
down around 50 s. 250 GPS trajectory samples are used for calibration and another 238 samples for validation. The GA is
used to search for the optimal IDM and Hidas model parameters at which the distribution differences between the modeled
and observed travel time and entry speed are minimized. The model calibration adopts the following multi-objective opti-
mization model:
minp� Values S:T:
PIDM 2 XIDM

PHidas 2 XHidas

�
ð14Þ
where P represents the calibrated model parameters; X contains the parameter upper and lower bounds; and p� Values
contains the p-values of the Kolmogorov-Smirnov (K-S) tests. Two K-S tests are performed for the travel time and entry
speed separately. The less the p-value is, the closer the modeled and observed travel time (entry speed) are. The calibrated
IDM and Hidas parameters and the optimal parameter levels are shown in Table 6. As shown by Fig. 7, the modeled results
are very consistent with the validation dataset.
Fig. 6. Case study site.



Table 6
Calibrated traffic model parameters.

Model parameter Optimal value

Maximum acceleration of cars acar , m/s2 1.1
Maximum acceleration of trucks atruck , m/s2 0.8
Maximum desirable deceleration of cars bcar , m/s2 1.9
Maximum desirable deceleration of trucks btruck , m/s2 1.5
Minimum spacing s0, m 2.0
Desired speed v0, m/s 31.0
Standard deviation of v0, m/s 2.0
Desired HW of non-ADAS equipped driver, s 1.2
Standard deviation of HW, m 0.2
PRT of non-ADAS equipped driver, s 1.2
Standard deviation of PRT, m 0.2
Coefficient a 4
Coefficient b 2
Maximum deceleration of subject driver in cooperative or forced lane changes, m/s2 2.3
Maximum deceleration of lag vehicle in cooperative lane changes, m/s2 2.3
Maximum deceleration of lag vehicle in forced lane changes, m/s2 6.0

Fig. 7. Traffic model validation results.

144 H. Liu et al. / Transportation Research Part C 76 (2017) 132–149
4.3. Case study results and discussion

The case study considers a base scenario and three ADAS scenarios. In the base scenario, none of the modeled drivers are
equipped with the ADAS. Results of the base scenario represent the existing traffic condition. The three ADAS scenarios
incorporate low, medium and high ADAS marketing penetration rates, respectively. In each ADAS scenario, the modeled dri-
vers are first assumed to randomly choose the HWADAS and AHmax levels. Their compliance level to the ADAS information is
also a random variable that follows the normal distribution. Afterwards, the traffic management strategy is assumed to
be implemented. In this case, the drivers will consistently adopt the HWADAS and AHmax level recommended by the traffic man-
agement team. Their compliance level will become higher and less dispersed. We perform 20 simulation runs for each sce-
nario. The time period of each run is 90 min. The first 30 min are warm-up period. The data collected in the remaining 60 min
is adopted for the scenario comparison. Parameters used to define the scenarios are listed in Table 7.

We first compare the MOEs among the base scenario and the ADAS scenarios in which drivers randomly choose HWADAS

and AHmax. As Table 8 shows, the mean and standard deviation of the average conflicts measure decreases with the increase of
the ADAS penetration rate—more conflicts can be avoided as greater number of drivers are assisted with the ADAS. Nonethe-
less, the magnitude of the safety improvement is too small under the medium and high penetration rate scenarios. For exam-
ple, there is only 7.2% extra decrease of conflict as the penetration rate increases from 20% to 55%; and 4.3% extra decrease of
conflict as the penetration rate grows from 55% to 90%. In addition, the mobility MOEs even become worse as the penetration
rate increases. The reason for the throughput decrease is that the ADAS-equipped drivers tend to keep larger time headway
than non-equipped drivers. As a result, the ADAS-equipped drivers will maintain longer following distance than non-
equipped drivers under the same speed. The longer following distance leads to smaller vehicle density and smaller through-
put. The larger delay is caused by the unique acceleration and deceleration patterns of the ADAS-equipped drivers. Before
entering a congested region (e.g., a stop-and-go wave), a ADAS-equipped driver will begin decelerating at a larger distance
than a non-equipped driver. After the ADAS-equipped driver passes the congested region, she will not start to accelerate



Table 7
Scenario parameters.

Parameter Scenarios

Base ADAS 1-1 ADAS 1-2 ADAS 2-1 ADAS 2-2 ADAS 3-1 ADAS 3-2

Penetration rate 0% 20% 20% 55% 55% 90% 90%
Mean compliance level NA 50 90 50 90 50 90
Standard deviation of compliance level NA 50 10 50 10 50 10
HWADAS lower bound NA 1.2 s 1.2 s 1.2 s 1.2 s 1.2 s 1.2 s
HWADAS upper bound NA 2.4 s 2.4 s 2.4 s 2.4 s 2.4 s 2.4 s
AHmax lower bound NA 0.1 g 0.1 g 0.1 g 0.1 g 0.1 g 0.1 g
AHmax upper bound NA 0.9 g 0.9 g 0.9 g 0.9 g 0.9 g 0.9 g
ADAS influence time NA 5 s 5 s 5 s 5 s 5 s 5 s
Recovering time NA 10 s 10 s 10 s 10 s 10 s 10 s

Table 8
Comparison among scenarios.

Scenario Penetration rate Delay (s/veh) Throughput (veh/h/ln) Conflict (1/veh)

Mean Std Mean Std Mean Std

Base 0% 82.3 13.9 1305 26 2.7 0.5
ADAS 1-1 20% 74.6 (�9.4%) 13.3 1316 (+0.8%) 19 2.2 (�18.5%) 0.4
ADAS 2-1 55% 83.4 (+1.3%) 12.4 1316 (+0.8%) 26 2.0 (�25.9%) 0.3
ADAS 3-1 90% 106.9 (+29.9%) 15.4 1286 (�1.5%) 12 1.9 (�29.6%) 0.3

Std: standard deviation; changes comparing with the base scenario are shown by numbers in the parentheses.
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until the headway to the leading vehicle is longer than her desired headway. Because of these behaviors, the ADAS-equipped
drivers will end up with smaller average travel speed, and thus larger delay. The safety improvement is not significant,
because the ADAS intensifies behavior heterogeneity among drivers by enlarging the behavior differences of the ADAS-
equipped drivers and non-equipped drivers and changing the behavior of the ADAS-equipped driver changes from time to
time. Such a heterogeneity gets even larger as the ADAS-equipped drivers are allowed to randomly setup the ADAS algorithm
parameters. The behavior heterogeneity may negatively affect the traffic flow stability, and offset the safety benefit of the
ADAS.

Previous discussion reveals that the implementation of the ADAS may not lead to the expected traffic mobility and safety
improvement. One major reason is that the ADAS-equipped drivers randomly set up the ADAS parameter levels, resulting in
increased heterogeneity among drivers. If the ADAS-equipped drivers can consistently accept a ADAS parameter level, the
traffic mobility and safety performance might be improved comparing to the random parameter case. To test the hypothesis,
we first conduct a preliminary analysis at finite HWADAS and AHmax levels. The considered HWADAS levels range from 1.2 s to
2.4 s, with 0.3 s increment; and the AHmax levels range from 0.1 g to 0.9 g, with 0.2 g increment. Thus 25 cases (5 HWADAS levels
times 5 AHmax levels) have been considered in the preliminary analysis. The tested HWADAS and AHmax combinations cover the
entire domain of the two parameters. If substantial mobility or safety improvement is identified at some combinations, it is
worthy to continue the search for the optimal HWADAS and AHmax levels. Table 9 depicts the HWADAS and AHmax combinations
Table 9
Mobility and safety performance at finite HWADAS and AHmax levels.

Scenarios HWADAS (s) AHmax (m/s2) TADAS% PRT(s) HW(s) Delay (s/veh) Throughput (veh/h/ln) Conflict (1/veh)

ADAS 1-1 Random Random 9.2% 1.16 1.23 74.6 1316 2.2
ADAS 1-2 1.8 0.9 g 7.70% 1.16 1.22 73.6 1322 2.1

1.8 0.7 g 7.90% 1.16 1.22 73.3 1320 2.1

ADAS 2-1 Random Random 25.3% 1.12 1.30 83.4 1316 2.0
ADAS 2-2 1.8 0.9 g 20.7% 1.12 1.27 73.5 1321 1.6

1.8 0.1 g 33.0% 1.05 1.27 80.9 1404 1.9
1.5 0.7 g 20.2% 1.11 1.22 71.9 1366 1.9
1.2 0.9 g 17.9% 1.11 1.20 69.2 1385 1.9

ADAS 3-1 Random Random 41.5% 1.09 1.38 106.9 1286 1.9
ADAS 3-2 2.1 0.1 g 58.40% 0.95 1.43 105.1 1344 0.8

1.8 0.9 g 34.20% 1.09 1.33 91.1 1322 1.8
1.8 0.7 g 35.20% 1.09 1.33 96.5 1335 1.9
1.8 0.1 g 54.80% 0.95 1.30 84.9 1477 1.2
1.5 0.9 g 31.20% 1.07 1.23 75.4 1413 1.9
1.5 0.1 g 51.50% 0.95 1.23 80.4 1538 1.5
1.2 0.1 g 49.50% 0.96 1.20 71.7 1557 1.5
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that incur improved mobility and safety MOEs. In addition, the percentage of the ADAS influence time over the total vehicle
time traveled (TADAS%), and the average PRT (PRT) and desired headway (HW) of the modeled drivers are listed in the table
for better analysis. Based on these factors, we confirm that the ADAS interacts with drivers more frequently not only as the
penetration rate increases, but also as the HWADAS increases or the AHmax decreases. Moreover, the average PRT and headway
increase as the HWADAS and AHmax levels become higher.

Comparing to scenario 1-1, the improvement of the MOEs in scenario 1-2 is insignificant. Since the penetration rate of the
ADAS is low in scenario 1, the overall traffic operation will not have much change even though all ADAS-equipped drivers
behave consistently. It suggests that there is no much benefit to implement the traffic management under low ADAS pen-
etration rate. On the other hand, larger number of HWADAS and AHmax combinations have led the improved MOEs in scenario
2 and 3. The MOE improvement is also very significant. Hence the optimal ADAS parameter search should be carried out for
the medium and high ADAS penetration rate scenarios.

The optimal HWADAS and AHmax levels for scenario 2, and their corresponding MOEs are shown in Table 10. The optimal
points are visualized in Fig. 8. The optimal performance is reached when the HWADAS is in the middle range (e.g., 1.6 s to
1.8 s) and the AHmax is in the high range (e.g., 0.8 g to 0.9 g). In this case, the ADAS encourages the subject drivers to keep
a slightly longer headway than the non-equipped drivers. As the AHmax is set to a high level, the ADAS only triggers the col-
lision alarm when very severer conflicts take place. Under the optimal HWADAS and AHmax levels, the conflict and delay mea-
sures have the most significant improvement. It indicates that the reduction of behavior heterogeneity among ADAS-
equipped drivers can further take down the number of traffic conflicts. The reduction of conflicts leads to the decline of
the traffic disturbances. Consequently, the ADAS-equipped drivers encounter fewer deceleration and acceleration cycles,
resulting increase of the average travel speed and reduction of the delay. Nonetheless, the throughput improvement is
not as prominent as the other two MOEs. This is because the desired average headway of the drivers gets bigger under
the optimal HWADAS levels. The negative impact of the increased headway on the throughput can offset the mobility benefit
brought by the ADAS.

The optimal HWADAS and AHmax levels for scenario 3, and their corresponding MOEs are shown in Table 11. The optimal
points are visualized in Fig. 9. The optimal points are found at the lowest AHmax level (i.e., 0.1 g). In this case, the ADAS alarm
Table 10
Optimal HWADAS and AHmax levels for scenario 2.

Scenario HWADAS (s) AHmax (m/s2) Delay (s/veh) Throughput (veh/h/ln) Conflict (1/veh)

Mean Std Mean Std Mean Std

ADAS 2-1 Random Random 83.4 12.4 1316 26 2.0 0.3
ADAS 2-2 1.76 0.90 g 67.2 (�19.4%) 10.5 1333 (+1.3%) 19 1.76 (�12.0%) 0.3

1.73 0.89 g 67.7 (�18.8%) 10.7 1341 (+1.9%) 29 1.73 (�13.5%) 0.4
1.67 0.89 g 69.2 (�17.0%) 11.4 1353 (+2.8%) 13 1.67 (�18.5%) 0.4
1.65 0.88 g 69.9 (�16.2%) 9.6 1356 (+3.0%) 18 1.65 (�16.5%) 0.3
1.62 0.88 g 70.9 (�15.0%) 9.0 1360 (+3.3%) 17 1.62 (�19.0%) 0.3

Changes are shown by numbers in the parentheses.

Fig. 8. Visualization of optimal HWADAS and AHmax levels for scenario 2.



Table 11
Optimal HWADAS and AHmax levels for scenario 3-2.

Scenario HWADAS (s) AHmax (m/s2) Delay (s/veh) Throughput (veh/h/ln) Conflict (1/veh)

Mean Std Mean Std Mean Std

ADAS 3-1 Random Random 106.9 15.4 1286 12 1.9 0.3
ADAS 3-2 2.1 0.1 g 102.3 (�4.3%) 7.0 1357 (+5.5%) 19 0.8 (�57.9%) 0.1

2.0 0.1 g 97.1 (�9.2%) 10.7 1396 (+8.6%) 30 0.9 (�52.6%) 0.2
1.9 0.1 g 93.7 (�12.3%) 9.3 1426 (+10.9%) 19 1.0 (�47.4%) 0.3
1.8 0.1 g 87.5 (�18.1%) 8.2 1477 (+14.9%) 23 1.2 (�36.8%) 0.4
1.6 0.1 g 79.8 (�25.4%) 9.8 1524 (+18.5%) 14 1.4 (�26.3%) 0.4
1.2 0.1 g 74.0 (�30.8%) 8.8 1564 (+21.6%) 17 1.5 (�21.1%) 0.2

Changes are shown by numbers in the parentheses.

Fig. 9. Visualization of optimal HWADAS and AHmax levels for scenario 3.
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will be triggered even if the conflict is a minor one. As a result, the system will interact with the subject drivers very fre-
quently. On the other hand, the optimal HWADAS ranges from 1.2 s to 2.1 s. If the HWADAS is set to low levels (e.g., 1.2 s to
1.6 s), the mobility performance will be most significantly improved; if the HWADAS is set to high levels (e.g., 1.6 s to
2.1 s), the safety performance will have larger improvement than the mobility measures. The actual HWADAS for a concerned
site can be determined based on the control priority of the specific site. For example, if recurrent congestions are observed at
the site, the improvement of traffic efficiency might need to be prioritized. Thus the headway threshold should be set at
lower levels so that the mobility MOEs can reach the optimal levels. On the other hand, if the primary objective is to improve
the safety, the headway should be set at higher levels such that the number of conflicts are minimized. Comparing to the
scenario 2, the optimal points are much more scattered in this scenario. It means that the optimal traffic operation can
be achieved in greater HWADAS and AHmax ranges. In other words, the condition for optimization becomes less strict. In addi-
tion, both the throughput and conflict measures have much greater improvement in this scenario. The delay measure is
worse than that of scenario 2 when the HWADAS is set to high levels, because in this case, the HWADAS is much larger than
the optimal HWADAS of scenario 2. As discussed earlier, a larger headway can result in a smaller average travel speed and
longer delay.

Results in Figs. 8 and 9 show that the change of MOEs is more rapid along the HWADAS axis than along the AHmax axis. It
suggests that the HWADAS plays a more important role in influencing the MOEs than the AHmax. Since the ADAS continuously
monitor the headway of a subject driver, the effect of HWADAS is cast on the subject driver all the time. On the other hand, the
effect of AHmax only arises when the following distance is less than the warning distance. As the chance for a driver being
affected by HWADAS is larger, the HWADAS terms play more significant role. Fig. 8 also suggests that the low HWADAS and
AHmax levels (e.g., HWADAS < 1:4s and AHmax < 0:4g) should be avoided when the ADAS penetration rate is 55%. At these
HWADAS and AHmax levels, the ADAS makes the drivers overly sensitive to the traffic conflicts. Such a behavior of a ADAS-
equipped driver might induce a chain of traffic conflicts to the following drivers, especially when the following drivers
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are non-equipped drivers. The high HWADAS levels should also be avoided, because it causes drastic decrease of the mobility
measures. Such a low traffic flow efficiency is not acceptable for a freeway facility. For scenario 3, the low HWADAS and med-
ian AHmax levels (e.g., HWADAS < 1:4s and 0:4g < AHmax < 0:6g) should be avoided (see Fig. 8). In these ranges, the traffic oper-
ation is most unstable and the largest number of conflicts per vehicle is observed.
5. Conclusion

Through a case study by using the proposed methodology, this research reveals that, if the ADAS-drivers set up the ADAS
algorithm parameters freely, the implementation of the ADAS actually enlarges the behavior heterogeneity between the
ADAS-equipped drivers and the non-equipped drivers. As a result, the systematic safety benefit of the ADAS becomes
insignificant and the mobility performance even decreases as more ADAS-equipped vehicles emerge in the vehicle fleet.
On the other hand, the study identifies the existence of optimal ADAS algorithm parameters HWADAS and AHmax, which are
responsible for drivers’ desired headway and PRT adaptation, respectively. If the optimal parameters are consistently
accepted by drivers, the safety performance measured by the number of conflicts per vehicle and the mobility performance
measured by average delay and highway throughput can be improved at the same time. Another interesting finding is that
the level of traffic control required to achieve the optimal traffic mobility and safety performance increases as the ADAS pen-
etration rate increases. Under the low penetration rate scenario, there is no need to ask the drivers to consistently implement
the optimal ADAS algorithm parameters. In the medium and high penetration rate scenarios, it is preferable for the ADAS-
equipped drivers to use the optimal ADAS algorithm parameters. Moreover, under the high ADAS penetration rate scenario,
the optimal ADAS algorithm parameter set contains multiple distinct points, which offer alternative candidates for the traffic
management centers as they develop traffic control strategies. For example, some optimal points correspond to the maxi-
mum safety MOE and suboptimal mobility MOEs while other points correspond to the maximum mobility MOEs and sub-
optimal safety MOE. These points can be easily applied for different control priorities (e.g., safety improvement first vs.
mobility improvement first). Finally, the presented methodology is not exclusive to the FCW function evaluated in this study.
It actually an open framework that is capable of incorporating other ADAS functions or other advanced transportation tech-
nologies, as long as their impact on driving behavior adaptation is quantified. Results from the framework are expected to lay
out a solid foundation to further (1) promote successful deployment of the advanced technologies into the existing highway
transportation systems; (2) facilitate the development new traffic information services in the traffic environment where the
advanced technologies are deployed; and (3) enhance user experience in the traffic environment by offering them useful
driving assistance information and driving behavior guidelines.

In our current research, some aspects of the behavior adaptation for both ADAS-equipped drivers and non-equipped dri-
vers are not incorporated into presented methodology. For example, an ADAS-equipped driver might react differently to the
same ADAS warning or advisory message due to the effect of the roadway environment and her mental state. After using the
ADAS for a long period of time, the driver’s behavior patterns may become different with the patterns observed as she first
adopts the system. In addition, the non-equipped driver might have different reactions when interacting with ADAS-
equipped drivers and non-equipped drivers. In the future, we will analyze these behavior aspects based on the reported
empirical data and incorporate them into the presented methodology framework. In addition, the cognitive model describing
human drivers’ decision process will be integrated to more accurately predict the drivers’ driving activities under the influ-
ence of the ADAS.
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